

Faculty of Health and Applied Sciences Department of Health Sciences

QUALIFICATION: BACHELOR OF MEDICAL LABORATORY SCIENCES/BACHELOR OF HUMAN NUTRITION		
QUALIFICATION CODE: 08BMLS/08BOHN	LEVEL: 5	
COURSE: BIOCHEMISTRY/INTRODUCTION TO BIOCHEMISTRY	COURSE CODE: BIO521S/IBC521S	
SESSION: JANUARY 2020	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

SUI	PPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER	DR YAPO GUILLAUME ABOUA
MODERATOR:	PROF HABAUKA KWAAMBWA

	INSTRUCTIONS
1.	Answer all questions.
2.	Please write neatly and legibly.
3.	Do not use the left side margin of the exam answer book.
4.	No books, notes or other additional aids are allowed.
5.	Mark all answers clearly with their respective question numbers.

Non-programmable calculator is allowed.

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page)

SECTION A

Ques 1.1		1: Multiple Choice ich of the following sequences of organisation is likely to be seen in a	(1)	
	mu	lticellular organism, going from smallest to largest?		
	a.	Cell, organ, system, tissue		
	b.	Cell, tissue, system, organism		
	c.	Organism, system, organ, tissue		
	d.	Tissue, system, cell, organ		
1.2	M	etal oxides are typicallywhile non-metal oxides are typically	(1)	
	_	·		
	a.	Amphoteric, basic		
	b.	Amphoteric, acidic		
	c.	Basic, acidic		
	d.	Basic, amphoteric		
1.3	An	ion gap is the difference in the plasma concentrations of	(1)	
	a.	(Chloride) and (Bicarbonate)		
	b.	(Sum of cations) and (Sum of anions)		
	c.	(Sodium) and (Chloride)		
	d.	(Sodium + Potassium) and (Chloride + Bicarbonate)		
1.4	Na	me the amino acid which exists in two non-superimposable mirror	(1)	
	ima	ages of each other.		
	a.	Anomer		
	b.	Chiral carbon		
	c.	Epimer		
	d.	Enantiomer		
1.5	Wł	Which of the following below is an example of enzyme specificity?		
	a.	Substrate specificity		
	b.	Reaction specificity		
	c.	Stereo specificity		
	d.	All of these		

1.6	wr	iat type of interactions between molecules in a living organism is	(1)
	str	ongest?	
	a.	Electrostatic interaction	
	b.	Covalent bond	
	c.	Hydrogen bonding	
	d.	Van der Waals forces	
1.7	Wł	nich of the amino acids below is the uncharged derivative of an acidic	(1)
	am	ino acid?	
	a.	Serine	
	b.	Tyrosine	
	c.	Glutamine	
	d.	Cysteine	(1)
1.8	W	hich of the following is an amino acid found in proteins?	
	a.	Adenosine	
	b.	Alanine	
	c.	Adenine	
	d.	Linoleic acid	(1)
1.9	Re	gulation of some enzymes by covalent modification involves addition	
	or	removal of	
	a.	Phosphate	
	b.	Coenzyme	
	c.	Sulphate	
	d.	Acetate	
1. 10	Coenzyme is		
	a.	Often a metal	
	b.	Always an inorganic compound	
	c.	Often a vitamin	
	d.	Always a protein	

1.11	In β -oxidation of fatty acids, which of the following are utilised as	(1)
	co-enzymes?	
	a. FAD and NAD ⁺	
	b. FAD H ₂ and NADH + H+	
	c. NAD+ and NADP+	
	d. FAD and FMN	
1.12	A deficiency of carnitine might interfere with	(1)
	a. ß-oxidation	
	b. Palmitate synthesis	
	c. Mobilisation of stored triacylglycerol from adipose tissue	
	d. Ketone body formation	
1.13	Which of the following is an essential fatty acid?	(1)
	a. Linolenic acid	
	b. Linoleic acid	
	c. Arachidonic acid	
	d. All above	
1.14	Pancreatic lipase converts triacylglycerols into	(1)
	a. 2-Monoacylglycerol	
	b. 3-Monoacylglycerol	
	c. 1-Monoacylglycerol	
	d. 2, 3-Diacylglycerol	
1.15	Oxidation of fatty acids occurs	(1)
	a. In the cytosol	
	b. In the matrix of mitochondria	
	c. On inner mitochondrial membrane	
	d. On the microsomes	
1.16	The following are functions of prostaglandins except	(1)
	a. Prevention of myocardial infraction	
	b. Lowering of blood pressure	
	c. Anti-inflammatory	
	d Introduction of Jahour	

1.17 The following are called reducing sugars EXCEPT	(1)
a. Glucose	
b. Lactose	
c. Sucrose	
d. Maltose	
1.18 Which one of the following glycolytic enzymes is used in gluconeogenesis?	(1)
a. Glucokinase	
b. Pyruvate kinase	
c. Aldolase	
d. Phosphofructokinase	
1.19 Codons are present on	(1)
a. DNA	
b. mRNA	
c. tRNA	
d. rRNA	
1.20 In humans, the main product of purines is	(1)
a. Ammonia	
b. Uric acid	
c. Urea	
d. β-alanine	
SECTION B	[80]
Question 2: Fill the blank spaces only by writing down the number and the	[20]
correct missing expression	
2.1 is the study that explains how different sequences of	(1)
biochemical reactions interact with each other for survival of cell (organism)	
under various conditions.	
2.2 In Induced Fit Model, the enzyme molecule of amino acid residues that make	(1)
up the are not oriented properly in the absence of substrate.	

2.3 In spermatozoa,accounts for 90% of cell whereas in other cells,	(1)
it accounts for less than 10% of the cell.	(1)
2.4amino acids are amino acids that can be converted to glucose.	(1)
2.5 When the CO ₂ level in the blood rises (as it does when you hold your breath),	(+)
the excess CO2 reacts with water to form additional carbonic acid and	
blood pH.	(1)
2.6 Lactic acid enhances tissue oxyhaemoglobin dissociation and expansion of	(-)
the coronary vessels, therefore compensates phenomena.	(1)
2.7 Amino acids arefor proteins.	(1)
2.8 Deamination of an amino acid is coupled with amination of a acid.	(1)
2.9 To form polypeptides and proteins, amino acids are joined together by	(-)
bonds.	(1)
2.10 Transcription continues until asequence is reached.	(1)
2.11are long, rod-shaped molecules that are insoluble in water	(-/
and physically tough.	(1)
2.12 All inherited and expressed genetic information, involve processes such as	(-/
replication, and translation into proteins.	(1)
2.13 One difference between 'chemical catalysts' and enzyme is that enzymes	(-)
arein the type of reaction to be catalysed and they function within	
a moderate range of hydrogen ion concentration and temperature along	
with certain other specified conditions.	(1)
2.14 Catalytic efficiency of enzymes can be regulated byor	
inhibition.	(1)
2.15 Enzymes may be termed as 'molecular switches', which regulate the	
catalytic activity and transfer ofin the biological system.	(1)
2.16 Carbohydrates not only serve as major sources of energy but also function	
as for the synthesis of lipids, amino acids, glycoproteins	
and proteoglycans in the body.	(1)
2.17 are formed by interaction between a monosaccharide or a	
monosaccharide residue and the hydroxyl group of a second compound	
that may or may not be a monosaccharide.	

2.18	3	is the disease in which lactate, the final product of anaerobic	(1)
		glycolysis, accumulates.	
2.19	9 _	is a condition where ketone bodies in blood rise above normal	(1)
		levels.	
2.20) Pl	hospholipids are major components of cell membranes. They are also part	(1)
		of lipoproteins and bile and act as lung	
Que	esti	on 3: Short Answers	[40]
3.1	Th	e major carbohydrates present in our diet are starch, glycogen, sucrose,	
lact	ose	e, maltose and very little concentrations of fructose and pentose.	
	a.	Describe the structures and functions of chitin and starch.	(4)
	b.	State briefly four regulation processes of blood glucose.	(4)
	c.	What are the structural differences between maltose, sucrose and	(3)
		lactose?	
	d.	Name the three enzymes involved in the process of gluconeogenesis.	(3)
	e.	Why is a Citric Acid Cycle said to be an anaplerotic process?	(2)
3.2	Th	e animal sources of protein and lipids include milk, butter, ghee, meat and	
		fish.	
	a.	Explain the difference between oil and fat.	(2)
	b.	What are prostaglandins and what is its precursor?	(3)
	c.	Why does butter soften at room temperature?	(2)
	d.	Why does coconut oil solidify in winter?	(2)
	e.	Name four biological functions of lipids.	(4)
	f.	Name four lipid components found in biological membranes.	(4)
	g.	State the position and functions of two types of membrane proteins.	(4)
	h.	Name three glucogenic amino acids?	(3)

END OF EXAM

HF is 6.8×10^{-4} .

in HF and 0.10 M in HCl. The equilibrium constant for the ionization of